作为一个长期在技术圈里摸爬滚打、这两年又被卷进大模型浪潮的人,我越来越发现——所谓《ai工程师基础知识》,和大众想象的“几门课、几本书、几个网课”完全不是一回事。
更像是一张不断被改写的个人地图:你今天以为的重点,可能三个月后就过时;你此刻觉得学不会的东西,一年后回头看,可能只是当初少了一两个关键的“挂钩点”。
下面,我就按自己的经历,把这张“AI工程师基础知识地图”摊开给你看。不是官方教程,也不是流水账,而是我真正在工作、面试、踩坑里反复验证过的那一套。
一、先搞清楚:AI工程师,不是“会点Python就行”
很多人问我:“AI工程师到底干嘛?是不是写几行模型代码就完事了?”
不。真的不。
我眼里的 AI 工程师,更像是一个在数学、代码、工程、产品、数据之间不断来回穿梭的人:
- 你既要懂一点算法原理,不至于被框架牵着鼻子走;
- 又必须会扎实的工程实现,模型不是跑在论文里,而是跑在服务器上;
- 还要能听懂业务需求,知道这个模型到底在帮谁解决什么问题,而不是只在实验室里追指标。
所以,如果要用一句话定义这份工作:
AI工程师 = 用工程手段,把算法模型变成现实世界可用产品的人。
这个身份一旦想清楚,你在搭建自己的AI工程师基础知识时,会清醒很多:不是只刷题、背公式,而是要反复问自己——“我学这个,将来能在项目里怎么用?”
二、扎实但不过度完美:数学和编程要怎样学
1. 数学:只追求“够用且能举一反三”
老实说,很多人被高等数学、线性代数、概率统计这几个词吓退。但现实是,绝大多数工程岗位,真正在用的数学,其实集中在几个支点上:
- 线性代数:向量、矩阵运算、特征向量、特征值;
- 概率与统计:概率分布、期望、方差、最大似然、贝叶斯直觉;
- 微积分:导数、偏导、梯度下降背后的那点东西。
我自己的路径是:
- 先用通俗一点的资料把这些概念先“混个脸熟”;
- 再在具体模型里,反复问一句:“这个地方为什么要这样算?”
例如在做逻辑回归时,我会把损失函数和梯度推一遍,哪怕不写得多严谨,至少搞明白:为什么是这个方向下降,而不是另一个方向。这种“半严谨半感性”的理解,比盲目做一堆题更有用。
关键在于:
学数学,不是为了“考试全对”,而是为了在调模型的时候,脑子里有一盏灯。
2. 编程:Python 是地基,但工程思维才是钢筋
绝大多数 AI 工程岗位,Python 是标配,这个没得跑。但很多人只停留在“会写循环,会调用库”的层面,结果一上项目就乱成一锅粥。
对我自己帮助最大的是这几块:
- 掌握 Python 基础语法 + 常用库(
numpy、pandas、matplotlib); - 早点接触面向对象、模块划分、代码组织,而不是所有东西堆在一个脚本里;
- 学会用 虚拟环境、包管理、日志、配置文件,这些看似“杂活”的东西,真的会把你和“脚本玩家”区分开;
- 看一些成熟项目的源码,模仿别人如何组织工程结构。
当你能把一个小模型封装成一个可复用的模块,能写出别人一眼就看得懂的代码,这已经是 AI 工程师基础知识里非常重要的一步了。
三、别急着上大模型,先把机器学习打实
1. 传统机器学习是“内功”
身边很多人,一上来就想冲大模型、LLM、Transformer。理解,这些词很酷。但现实是,如果监督学习、分类、回归、过拟合、交叉验证这些基础没打牢,大模型也只是多一个“会调 API 的人”。
我自己的习惯是这样练:
- 拿几个真实的小数据集(房价预测、电影评分、文本分类之类),从最简单的 线性回归、逻辑回归、决策树、随机森林 开始练;
- 每做一个任务,都刻意去比较多个算法,体会它们的偏差/方差特点;
- 认真做一次完整的流程:
- 数据清洗、特征工程、划分训练集/验证集/测试集;
- 模型训练、调参、评估指标(准确率、F1、AUC……);
- 最后写个小报告,哪怕只给自己看。
这一大圈走下来,很多教科书上的抽象词汇就都有“肉身”了。
2. 深度学习:从一个小网络开始
在我看来,AI工程师基础知识里的深度学习部分,初期只需要搞懂三件事:
- 神经网络的基本结构:层、权重、激活函数、损失函数;
- 前向传播/反向传播的直觉,不是推导到最后一行,而是知道梯度是怎么被传回去的;
- 会用一个框架,比如 PyTorch 或 TensorFlow,写出一个从数据读取到训练、验证、保存模型的完整脚本。
第一步可以很“土”:就拿 MNIST 手写数字识别,搭一个简单的多层感知机,然后慢慢加深网络、加卷积、换优化器。你会在一次次训练中,突然体会到:“原来这就是过拟合”“原来学习率太大是这种感觉”。
这比死记硬背“过拟合是训练误差低测试误差高”有效多了。
四、AI工程师真正吃饭的是“工程感”
1. 不只是能跑,而是能稳定上线
很多人做项目停在“我本地跑通了”。而工作里,真正重要的是:
- 这个模型能不能部署成服务,挂在接口后面给前端或其他服务调用;
- 出问题时,有没有日志和监控;
- 数据分布一旦变化,你能不能发现模型性能衰退。
我第一次把模型上线,是用最粗糙的方式:
- 用 Flask 写了个 API,把模型加载进来;
- 做了一个简单的输入检查和异常处理;
- 打一点日志(请求参数、模型输出、耗时)。
虽然很简陋,但那一刻我非常清楚地意识到:模型不再是“实验对象”,而是“产品的一部分”。从那之后,我看待“AI工程师基础知识”的视角彻底不一样了——
你必须知道一点 Linux、Docker、简单的CI/CD思路、基本的系统性能优化。这些东西一开始看起来像运维,但后面你会发现,没有它们,你做出来的东西就是不能稳稳地跑在生产环境里。
2. 数据工程能力,是被严重低估的核心
很多新人以为 AI 的核心是模型。但我几乎每一个项目,70% 的时间在和数据打架:
- 数据格式乱七八糟,字段缺失、含义不统一;
- 标签错误、时间错位、偏差严重;
- 数据量太大,不能一次性读到内存里。
于是,你会不得不去学:
- 用 SQL 从数据库里抽数据;
- 用 pandas / PySpark 做预处理;
- 写一些小脚本监控数据质量变化。
这些活可能看上去不那么“酷”,但它们在实际工作里,是 AI 工程师和“只会调包的人”的分水岭。
五、大模型时代,AI工程师基础知识在被悄悄改写
1. 不是“都会过时”,而是“基础在下沉,门槛在上移”
大模型火起来之后,很多人焦虑:“那我还要不要学传统机器学习?要不要再啃这些基础?”
我自己的体会是:
- 基础没有过时,而是变成了“入门门槛”;
- 真正的差异,已经转移到:
- 谁更懂如何把大模型嵌到业务流程里;
- 谁能设计出更可靠的 Prompt、工具调用、检索增强(RAG);
- 谁能把大模型和传统系统、数据库、搜索引擎,拼成一个稳定的整体。
这就意味着,今天的 AI工程师基础知识,已经不止是“会建模、会训练”,还包括:
- 理解大模型 API 的调用方式和限制;
- 知道上下文长度、Token、温度这些参数背后的影响;
- 会设计评估方案,判断一个对话系统或智能助手是不是“真的有用”。
2. 把自己变成“懂模型的产品工程师”
我越来越相信,未来能站稳脚跟的 AI 工程师,有一个共同特点:
不仅懂技术,还真正在意用户、流程、场景。
在一个项目里,我曾经花了几天时间,盯着客服录音和聊天记录,只为了弄清楚:用户到底在什么时候会来问问题,问题背后真正的焦虑是什么。然后再回过头去设计模型的能力边界、提示词结构,以及失败时的兜底逻辑。
那一次之后,我对“AI工程师”这个身份的理解变了:
你不是在堆叠参数,而是在和现实生活对接。这种对接能力,也是我现在会非常认真划进AI工程师基础知识的一部分。
六、我的个人建议:怎么搭好自己的AI基础框架
把话说得再具体一点,如果你此刻正准备入行,或者刚起步,我会建议你按这样的顺序去搭自己的《ai工程师基础知识》:
- 打底:Python + 数学
- 每天写一点代码,做小练习,不要怕写得丑;
-
把线代、概率、微积分里和机器学习最相关的部分,补到“能看懂公式”的程度。
-
内功:机器学习 + 深度学习
- 跑通几个经典任务:分类、回归、推荐、文本分类;
-
至少用一个框架,把一个深度学习项目做完整(数据→训练→评估→保存→加载)。
-
工程化:从脚本到服务
- 学会用 Flask/FastAPI 之类开发一个推理服务;
- 用 Docker 打包部署一次,哪怕只是部署到自己服务器上;
-
给自己的服务加上日志和简单监控。
-
数据能力:和数据硬碰硬
- 用 SQL 或其他方式,从真实业务系统里拿一批数据;
- 做一次完整的数据探索、清洗和特征工程;
-
尝试处理稍微大一点的数据量,逼自己优化代码和流程。
-
大模型与应用:站在浪潮里睁大眼睛
- 学会调用主流大模型 API,做几个小工具:聊天助手、文档问答、代码辅助;
- 尝试一个完整的小项目:设计功能→实现→自己用一段时间,感受体验和问题;
- 记录下每一次失败和奇怪输出,从中总结“模型边界感”。
你会发现,这些东西加起来,其实就是你自己的AI工程师基础知识全景。不是一张网课大纲,而是你亲手踩出来的一条路。
最后说一句心里话
如果今天你对 AI 行业既好奇又焦虑,那很正常。我也时不时会怀疑:“技术变得这么快,我现在学的,会不会很快被淘汰?”
但是回头看这几年,真正一直有价值的,是那些看起来很“朴素”的基石:
- 认真理解一个模型的工作方式;
- 脑子里有基本的数学和概率直觉;
- 写得出清晰可靠的代码;
- 愿意面对真实的数据和真实的用户场景,而不是只躲在实验指标里。
这些东西,一旦扎进你的工具箱里,就会悄悄变成你这辈子都能用的底气。
而《ai工程师基础知识》,其实并不是一门固定的课,而是一条会被你不断重写的时间线:十年之后,你再回头看今天的学习笔记,可能会笑自己稚嫩,但不会否定今天的每一步努力。
只要别停。哪怕每天只往前挪一点点,也是在不知不觉地,给未来的自己铺路。